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Abstract. An extension of the Voronoi tessellation, the Laguerre polyhedral decomposition, is introduced
and applied to the analysis of the packing geometry of amino-acids in folded proteins. This method considers
an ensemble of points with different weights and therefore it is well suited for a geometrical analysis of a
set of objects with a wide size distribution. With this method it is shown that the true volumes occupied
by the amino-acids inside a protein is better described than with the standard Voronoi procedure. This
method allows defining unambiguously (without cut-off distance) the neighborhood for each amino-acid in
a given protein and contact matrices can be established which contain all topological informations on the
internal structure. Finally, a statistical analysis of the geometrical characteristics of the polyhedra attached
to each amino-acid is done over a collection of 35 proteins.

PACS. 87.10.+e General theory and mathematical aspects – 36.20.-r Macromolecules and polymer
molecules

1 Introduction

Understanding the folding of an amino acid chain into
a well defined globular protein structure is a challenge.
Tremendous amount of experimental work has been done
in the fields of molecular biology, biochemistry and bi-
ological physics to try to understand this complex phe-
nomenon. A folded protein is a very compact and repro-
ducible packing of different amino-acid residues (AA) with
lateral chains attached to a backbone chain of peptide
bonds via α-carbon atoms [1]. The knowledge of the pre-
cise structure of a folded protein is very essential. Up to
now the only efficient tools are X-rays which requires crys-
tallized samples and NMR. Quite a lot of structures are
presently known [2], at least enough to recognize some gen-
eral trends but, anyway, they represent only a few fraction
of the total number of proteins.

What still remains unclear is how to predict the na-
tive state structure of a protein from its sequence (i.e,
given the ordered list of AAs along the chain). One pos-
sible way to overcome this failure of predictability of the
molecular structure is to analyze the energy landscape,
as currently done by many authors [3]. But another com-
plementary approach is to examine in details all the in-
formations that come from pure geometry of the known
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protein structures. In the field of liquids, liquid crystals,
crystalline and amorphous solids, such a geometrical ap-
proach was very fruitful [4].

Several authors have emphasised the importance of ge-
ometry and topology in protein folds (structure and fold-
ing). In his review, Baker [5] illustrates the role of topol-
ogy in folding mechanism. In this paper he quotes several
analyses, which make the same point [6] and [7]. Other au-
thors [8] have proposed to consider a protein as a packing
of a tube (garden hose), surrounding its backbone. They
use this approach to predict possible phase transitions be-
tween different states of compactness. The importance of
the backbone has also been emphasised by the result of
Tifonov et al. [9], of a larger probability of contact for
two AA, 27 steps apart along the polypeptide chain. In a
more mathematical approach, two of us have focused on
the relation between packing, chains, helices and their chi-
rality [10]. Thus, various new geometrical and topological
concepts are now introduced in protein studies.

To analyze the structure of folded proteins, we have
recently proposed a very sensitive geometrical approach
based on the so-called Voronoi tessellation (VT) [11]. A
tessellation is a way to describe the filling of space by pack-
ing solid polyhedra connected by common faces without
empty space between them. Given a set of discrete points
in space, the Voronoi tessellation consists in associating
to each point a polyhedral domain, called the Voronoi cell
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(VC), containing the entire neighborhood closer to a given
point than all the others. The cell characteristics provide
essential information on the local geometry of the consid-
ered packing. This tool is widely and currently used to
study random sphere packings, granular materials, foams,
froths or glasses [12].

There are several examples of VT methods applied to
proteins in the literature [13] but only a few of them con-
cern directly the packing of amino-acids. In order to as-
sociate a site to each AA the α-carbons could be chosen
as the starting set of points, but we have preferred, in our
recent study [11], to consider the geometrical centers of in-
dividual AAs. With this choice the VCs are representing
topologically better the true volumes occupied by the AAs
and lead to a more homogeneous distribution of distances.
As a result the lateral chains are well located inside their
cells.

In order to build the VC associated with a given AA,
it is necessary to have a precise knowledge of its neighbor-
hood. This is easy for AAs which are located well inside a
dense region of the bulk of the protein. In that case it is
enough to know the positions of its neighboring AA cen-
ters. But for an AA located close to the external surface
or in a cavity, this becomes more difficult as, in principle,
a detailed knowledge of the nature and location of the sur-
rounding molecules is needed. We have recently proposed
[14] to resolve this difficulty by surrounding the protein
with a model of solvent, that we will often call “environ-
ment” in this paper, whose characteristics are similar to
generic proteins considered as random dense packing of
equal sized spheres of average AA volume.

In our preceding works [11,14] we have always used a
standard VT method based on a previous so-called “De-
launay tetrahedrization” which treats all points with the
same weight and which is known to work quite well for
components of almost the same size [12]. However for sys-
tems containing small and large components, like SiO2

glasses for instance, with such a standard method the
VCs for small atoms appear too large and, reciprocally,
the VCs for large atoms appear too small and therefore
the VCs do not give a physically correct image of the vol-
umes occupied by the atoms. This is a trivial consequence
of the standard method in which the cell faces are located
at equal distance of closer atoms. In the case of proteins,
considered as a packing of AAs, it is known that the size
distribution of the AA volumes is quite wide as there is a
very large difference of volume between the smallest AA
(Gly) and the largest one (Trp) and it is worth improving
the method to take care of this. In the literature, it exists
another cellular decomposition, called “Laguerre froth”
[15,16], which can be viewed as a weighted Voronoi de-
composition in which the VC faces remain planar, but no
longer equidistant to the two points that separates: it is
closer to the point with smaller weight. This method has
been nicely applied to polyhedral patterns in physics, met-
allurgy and applied mathematics, by a group in Lausanne
[15], and to the study of foams by one of us [16]. In this
paper we intend to present this Laguerre decomposition
method in order to apply it to globular proteins.

2 Laguerre polyhedral decomposition

2.1 Power of a point with respect to a weighted point

Let us define the power of a point x (of Cartesian coordi-
nates x1, x2, x3) with respect to another point (site) s (of
Cartesian coordinates s1, s2, s3) of weight w(s) by:

p(x, s) = d2(x, s) − w(s) (1)

where d2 = (x1−s1)2+(x2−s2)2+(x3−s3)2 is the square
of the Cartesian distance between x and s.

This is the same as the power of a point relatively to
a sphere of center s and radius ρ when one sets w = ρ2,
but the above definition can be generalized to negative
weights. Recall that the power of a point relatively to a
sphere is the square of its tangent to the sphere, when it
is located outside the sphere.

Consider two points s1 and s2 with weights w1 and w2,
it can be easily shown that the set of points with equal
power relatively to s1 and s2 is a plane perpendicular to
the straight line joining s1 and s2. This generalizes, to the
case of a set of weighted points, the standard Voronoi con-
struction where the VC face is the median plane equidis-
tant to s1 and s2.

2.2 Weighted Delaunay tetrahedral decomposition

Considering a set of sites in space, a first step prior to
a Voronoi tessellation consists in performing a Delaunay
tetrahedral decomposition. This is done by determining
the “simplicial tetrahedra” formed with four sites such
that any other point of the set cannot fall inside the sphere
passing through these four sites (we assume that, in the
random systems considered here, four points are never in
the same plane, so that such a sphere always exists). In
practice, to determine the simplicial tetrahedra, we con-
sider all sets of four points and, for each set, we make a
loop over all the other points to test if they are inside the
sphere. The test for a point x to be inside the sphere de-
fined by the positively oriented tetrahedron (r, s, t,u) can
be performed by considering the following determinant in-
volving the coordinates:

δ =
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If δ is positive (resp. negative) the point x is inside (resp.
outside) the sphere.

This procedure can be straightforwardly extended to
the weighted Delaunay tetrahedrization, by considering
instead the following determinant in which the weights
(wx, wr, ws, wt, wu) of the five points (x, r, s, t,u) appear:

δw =
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Fig. 1. Left: standard Voronöı decomposition in two dimen-
sions, all points have the same weights. Right: Laguerre decom-
position for the same set of points but with different weights
represented by the circles whose radii are the square roots of
the weights. Note that points with smaller (larger) weights have
smaller (larger) cells compare to the standard Voronoi decom-
position.

In the standard case, a Voronoi tessellation can easily
be obtained from a Delaunay tetrahedrization by dual-
ity: the vertices of the VC are the centers of circumsphere
of the simplicial tetrahedra. The equation δ(x) = 0 is the
equation of the circumsphere and consequently the coordi-
nates of its center (equidistant to the four vertices of the
corresponding tetrahedron) can easily be obtained. The
vertices of the Laguerre polyhedra can be obtained in a
similar way, replacing δ by δw. Now such a vertex is no
more equidistant to the four vertices of the correspond-
ing simplicial tetrahedra but, it has the same power with
respect to these four weighted points. (It is at equal “tan-
gential distances” to these four points, when it lies outside
them.)

There is no difficulty to implement an algorithm based
on these results. Figure 1 shows a 2D example in which
Voronoi and Laguerre decompositions are contrasted.

2.3 Properties of Laguerre polyhedral decomposition

The Laguerre decomposition depends on the distribution
of weights. Of course, for a given set of points, if all the
wi’s are zero the Laguerre decomposition is identical to
the standard Voronoi decomposition, but this is also true
if all the wi’s have the same value. More generally, the de-
composition obtained with a given set of {wi} is identical
to the one obtained with {wi+c} where c is any positive or
negative constant. In practice, it is always possible to add
a sufficiently large constant to have all weights positive
and to represent them by (mostly overlapping) spheres of
radii ri =

√
wi. Conversely, it is clear that the set {cwi}

would not give the same decomposition: this is important
as it means that there is a local scale for the effect of the
weights related to the mean distances between sites.

Another tricky property is typical of Laguerre decom-
position and cannot occur in the standard Voronoi decom-
position: in some particular case it may happen that a site

is located outside its own cell. This happens if a sphere (1)
of weight w1 is at a distance d from a site (2) of weight
w2 such that d2 < w2 − w1. In that case the face asso-
ciated with these two sites cut the line (1-2) on a point
located outside the segment (1-2), on the side of site (1),
and consequently the site (1), located on the wrong side
of the face is pushed outside its own cell. Such a patho-
logical situation should be considered as unphysical and if
it happens for some sites of a given set this would mean
that either the site locations or/and the weights have not
been correctly chosen.

3 Proteins as polyhedral packings
of amino-acids

3.1 Proteins and their environment

A folded protein is a very compact packing of different
AA residues which can be represented by the set of their
geometrical centers. We have considered the known struc-
tures of 35 globular folded proteins chosen to belong to the
different folds and representative of the different classes.
For each protein we have determined the geometrical cen-
ters of all the AAs from which it is made [11]. The number
NAA of AAs in a protein is not very large: from NAA � 60
for small proteins to NAA � 600 for the largest ones, but
for most of them the number of NAA lies between 100 and
300. Thus, about two third of the AAs lie on the outer sur-
face of the fold. There is a problem in defining the Voronoi
cells for these AAs since they have no neighbors outside.
If one restricts the polyhedral decomposition to the set of
AAs only, the cells on the surface cannot be closed or they
are dramatically elongated.

In our first work [11] we have used an ad hoc method to
define and eliminate amino-acids at the surface. Here we
have preferred to use a more physically justified method
that we have introduced in a more recent paper [14] and
which consists in adding an artificial environment around
the protein. This environment is chosen to have packing
properties close to those of AAs in a protein. It can be
considered as a solvent made of molecules similar to a
generic AA. In practice we have considered random pack-
ing of spheres generated with an algorithm proposed by
one of us [17] after improving the well-known Jodrey-Tory
algorithm [18].

In order to simulate the solvent, the environment is
spread around the protein as a shell of constant thickness.
If there were a cavity inside the protein, it would also be
filled with the environment. The volume of an individual
sphere used to simulate the solvent is taken close the mean
volume of the AAs. In practice we have considered a radius
of 6.5 Å and the total number of points, i.e. NAA plus the
number solvent spheres was kept to be close to 10NAA to
insure closed cells for all AAs.

In practice we have built a large sphere packing and
we have immersed the protein inside it. Then we have
removed the environmental spheres superimposed to AA
spheres. Doing so it results some discrepancy between the
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environment and the protein at its surface. To resolve this
mismatch we have used an iterative relaxation of the envi-
ronment to obtain the best possible tessellation. We pro-
ceed by considering the protein and its environment as a
random dense ensemble of spheres. During the relaxation,
the spheres representing the AAs are kept fixed and only
the centers of the spheres of the environment are moved,
assuming a constant volume. At each iteration step, the
Voronoi cells are built and the sphere centers are shifted
towards the geometrical centers of the VC. This relax-
ation allows regularizing the shape of the cells of the en-
vironment: elongated cells become more isotropic with a
narrower distribution for their volumes. After about nine
iterations the environment centers do not move anymore
and the relaxation is deemed to be achieved.

3.2 Volumes of the amino-acids

In our previous works [11,14], a linear relation was ob-
served between the volume of an AA and the volume
of its corresponding VC: the larger (smaller) AAs have
larger (smaller) cells. But owing to the large disparity of
the volumes, the slope of this linear dependence is cer-
tainly underestimated, since a regular Voronoi decom-
position overestimates the size of the smaller AAs and
vice versa. One reason for using the Laguerre decomposi-
tion is that it yields more realistic volumes. However, to
perform a Laguerre decomposition, we need to know the
weights attributed to each AA. In practice we have chosen
the weights which give volumes for the AAs close to the
ones already known.

Volumes of AAs have been estimated by different au-
thors [19,20].

Here we have used the more recent work of Pontius
et al. [21], which is based on a Voronoi decomposition
based on the individual atoms of the protein. Each cell
corresponds then to an atom, and the volume of an AA
is the sum of the volumes of the cells of its constituting
atoms. The volumes that we have used are listed in Ta-
ble 1. We call them Pontius volumes and note them vP in
the following.

Since the atoms involved, C, N, O, H and S, have
roughly the same size, a Laguerre decomposition for the
individual atoms is not necessary. As seen in table I, the
Pontius volume of each AA depends on the architecture of
its side-group; it is not simply proportional to the number
of its constituting atoms. (Compare Ile 19 (= 5 + 1 + 13)
with His 17 (= 5 + 1 + 11) which has nearly the same
Pontius volumes, or the different volumes of Arg and Trp,
which have both 24 (= 5 + 1 + 18) atoms.)

3.3 How to choose the weights for the amino-acids

We want to choose the weights in order to have cell vol-
umes close to Pontius volumes. This is not trivial as the
decomposition is invariant under uniform translation of

Table 1. The list of the amino-acids with their correspond-
ing volumes vP in Å3 from Pontius work [21]. The standard
deviations σ for the vP estimates are also listed. We have dis-
tinguished two Cystines, Cyss and Cysh depending whether
they are involved in a disulfide bridge or not.

AA vP σ
Ala 91.5 5.32
Arg 196.1 4.25
Asn 138.3 5.60
Asp 135.2 5.21
Cysh 114.4 6.64
Cyss 102.4 6.13
Gln 156.4 4.32
Glu 154.6 5.75
Gly 67.5 5.72
His 163.2 4.04
Ile 162.6 3.64
Leu 163.4 4.19
Lys 162.5 2.24
Met 165.9 5.31
Phe 198.8 3.99
Pro 123.4 6.26
Ser 102.0 6.72
Thr 126.0 4.92
Trp 237.2 3.65
Tyr 209.8 5.29
Val 138.4 3.87

the weights. To determine the best weights for the amino-
acids we have used an iterative procedure in order to ob-
tain the volumes of the cells proportional to their corre-
sponding Pontius volumes. Initially, we set all the weights
(for the AAs as well as for the spheres of the environment)
arbitrarily equal to zero (leading to a Voronoi decompo-
sition). Then knowing all the weights wi at some step of
the iteration, we perform a Laguerre decomposition and
we calculate the volumes Vi of the cells for all the AAs
(the label i refers to the position of the AA along the pep-
tide chain). To proceed to the next iteration, the weights
of the AAs are modified according to the formula:

w′
i = wi + K(uvPi − Vi) (4)

where vPi is the Pontius volume of the AA labelled i, u is
calculated by

u =
∑

i Vi∑
i vPi

(5)

(the sums run over the AAs and do not consider the envi-
ronment) and the constant K is chosen positive and suffi-
ciently small to insure a good convergence for this iterative
process. The weights of the surrounding spheres (environ-
ment) are not modified during this iterative scheme. A
typical example of such a calculation is depicted in Fig-
ure 2 in which we have used Myohemerythrin (whose PDB
code is 2mhr), a fairly small protein containing 118 AAs.
On this figure the mean cell volume 〈V 〉 for each AA (av-
erage made over the same AAs of the protein) has been
plotted as a function of the Pontius volume before starting
the iterations (open circle) and after 330 iterations (full
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Fig. 2. Mean volume 〈V 〉 for the cell of a given protein as
a function of its Pontius volume vP in the case of the protein
2mhr. The open circles correspond to the results obtained with
the regular Voronoi tessellation, the full circles correspond to
the results obtained after 330 iterations with the iterative La-
guerre scheme explained in the text and the crosses correspond
to the results obtained with a unique Laguerre decomposition
using formula (6) for the weights.

Table 2. The list of the proteins on which we have applied an
iterative scheme to get a mean cell volume proportional to the
Pontius volume for each AA together with their numbers of
AAs and the numerical results for the ratio of proportionality.

Protein NAA u
1utg 70 1.125
2mhr 118 1.116
3chy 128 1.237
1hvc 203 1.145
1phm 305 1.222
1hle 362 1.080

circles), using K = 0.01. At the end of this iteration pro-
cess 〈V 〉 becomes proportional to vP within less than 10−5

error. The slope is slightly larger than, but roughly equal
to 1. This should be compared to the very small slope of
about 0.2 obtained with the regular Voronoi tessellation
method (open circles in Fig. 2).

The same iterative scheme has been applied success-
fully to some other proteins of various sizes and the results
for the slope u have been reported in Table 2.

In practice we have observed that this slope can vary
slightly with the protein and, for a given protein, with
the choice of the environment but it is always of order
1.12 ± 0.12, a quite reasonable result.

At the end of the iteration scheme the weights con-
verge to asymptotic values which has been plotted as a
function of v

2/3
P in Figure 3 for all the proteins listed in

Table 2. One observes a quite nice common linearity with
error bars which are perfectly consistent with the standard
deviations listed in Table 1 for the vP values.

A linear regression made through all these data gives:

w = −14.325 + 0.5282v
2/3
P (6)

Fig. 3. Plot of the weight w as a function of v
2/3
P obtained

at the end of the iteration scheme applied to the six proteins
listed in Table 2.

where w and vP are expressed in Å2 and Å3, respec-
tively. This is the relation that we have systematically
used and injected into the Laguerre polyhedral decompo-
sition method to get most of the results presented below.

To check the self-consistency of this choice we have
indicated by crosses in Figure 2 the mean volume 〈V 〉 as
a function of the Pontius volume vP for the 2mhr protein
when using equation (6) for the weights of the AAs. Of
course we now obtain some dispersion for the cell volumes
but the general linear dependence with the Pontius volume
is perfectly well recovered.

4 Contact matrices

4.1 Definition and methods of calculation

The arrangement of amino-acids in a given protein can
usefully be represented by a contact matrix. This is a sym-
metric N2

AA matrix αij with element αij = 1 if AA i is
in contact with the AA j, = 0 otherwise. The contact
matrix has already been introduced by several authors,
which assert that two AAs are in contact if their distance
is smaller than a given cut-off distance [22–25]. (Usually,
the distance between Cα atoms are used, but if one views
proteins as a packing of AAs, it seems preferable to use
the distance between the geometrical AA centers.) The
Voronoi and Laguerre decomposition define neighborhood
unambiguously, without relying to any cut-off distance.
This is why we built the contact matrix by stating that
two AAs are in contact if their cells share a face.

From a mathematical point of view, contact matrices
obtained using Voronoi or Laguerre decompositions are
2D representations that define the topological 3D struc-
ture uniquely (a unique topological graph). In physical
language, the entropy of all possible 3D structures de-
scribed by one contact matrix is zero, or very small. There
remains to ascribe specific amino-acids to the position i
along the polypeptide chain. But the combinatorics are
severely limited, geometrically because the volume of the
amino-acids must fit in the hole left by its contacts, and
chemically for the fold to be realisable.
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Fig. 4. 20 × 20 top-left corner of the contact matrix for the
2mhr protein. The non-zero elements are represented by open
squares, filled squares and crosses if the contacts are defined
by the Voronoi decomposition, the Laguerre decomposition and
by using a cut-off distance of 9 Å respectively.

As an illustration of the differences obtained by us-
ing these methods we have enlarged the top left corner of
the contact matrix for the 2mhr protein (Fig. 4). One can
observe differences in several places. The differences are
largest between the cut-off and the tessellation methods.
Here we have chosen the cut-off distance in order to ob-
tain roughly the same total number of non-zero elements
and one can see that on several places contacts obtained
with the tessellation methods are not recovered (especially
among the elements far from the diagonal) and some other
artificial contacts are added (especially on the border of
the diagonal stripe). This can be understood since by us-
ing a cut-off distance, one can miss contacts between two
large AAs and introduce artificial contact between two
small AAs. Differences between the Voronoi and Laguerre
methods are less frequent (they often occur when a small
AA is close to a large one) but we think they can be rel-
evant and in the following we will report two examples in
which we have used the Laguerre method.

4.2 Two typical examples

Since geometry and metric are highly correlated in a dense
packing, the contact matrix encodes most of the geome-
try of a protein. Nevertheless we should add information
on the chirality of proteins because two proteins with the
same chemical composition but with opposite chiralities
have the same contact matrices. We show how to read
folds in contact matrices on the two examples below. The
first one is Myohemerythrin (2mhr), already introduced
above. This is a globular protein made of four helices. The
second one is the signal transduction protein chey from
escherichia coli (3chy). This is a protein formed from a β-
sheet sandwiched between five α helices. The two matrices

Fig. 5. Contact matrix (118 × 118) for the 2mhr protein.

Fig. 6. Contact matrix (128 × 128) for the 3chy protein.

are shown in Figures 5 and 6. On these two matrices some
secondary structures show up on the border of the matrix
diagonal, as a rather broad stripe for an α-helix and a
narrow one for a β-strand. This can be understood since,
in an α-helix, the AA number i is always connected to the
AAs i±1, i±3, i±4 and sometimes to the AAs i±2. In a β-
strand, the AA number i is always connected to AAs i±2
only. Coils are less visible. It is important to remark that
other contacts are not at all randomly spread within the
matrix but rather concentrated along lines either perpen-
dicular or parallel to the diagonal. A line perpendicular
to the diagonal appear if two secondary structures are an-
tiparallel. Consider the two α-helices in 1mhr (which is
roughly the half of 2mhr). They run from Ala 41 to Ala
64 and from Val 71 to Ile 84. They are linked together by
a coil between 67 and 70. As two helices are refolded one
onto the other, it occurs very often that if AAs i and j
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are neighbors, then several AAs i + n and j − n are also
neighbors leading to non-zero matrix elements lying on a
segment perpendicular to the diagonal. Moreover, if the
chain folds again onto two already folded parts, this may
lead to a concentration of contacts along a segment par-
allel to the diagonal. A lot of these segments can be seen
in the case of 3chy.

Another intriguing observation can be made: in both
cases there is a concentration of contacts in the bottom-
left and top-right corners. This means that the two ends of
the protein chain are close together. This situation, which
occurs very often in protein chains, is worth investigating.

5 Cell statistics

5.1 Overal statistics

As already noticed in our previous work [11] two quanti-
ties of interest that give an idea of the overall geometry of
the packings of AAs in proteins are the mean number of
faces per cell 〈f〉, which is the mean coordination number
between AAs, and the mean number of edges per faces
〈e〉, which is related to the local symmetry around bonds
between neighboring AAs. Using the Laguerre method
and averaging over the 35 proteins we find 〈e〉 = 5.15
and 〈f〉 = 14.17. The slight differences with the values
reported in reference [11] comes more from the realistic
consideration of the surface than from the difference from
Voronoi and Laguerre methods.

More significant are the differences with values re-
ported in reference [14] which were obtained exactly under
the same conditions, but with the Voronoi method. In [14]
〈f〉 = 14.27 > 14.17 was obtained. Theoretical works (see
[4] for references) on polydisperse sphere packings show
that large fluctuations in cell sizes decrease the coordi-
nation number 〈f〉. By contrast, cell shape anisotropy,
increases 〈f〉. Since disorder cause both cell fluctuations
and disorder, small values of 〈f〉 are usually observed only
in crystalline structures. Its observation here indicates
that the Laguerre cells for AAs in proteins are not too
anisotropic and adjusted to some extend. Anyhow these
values are still close to those of compact structures of-
ten encountered in condensed matter physics. A value of
〈e〉 � 5 is characteristics of compact structures built us-
ing local rules for packing, like hard sphere random close
packings. Such strong five fold local symmetry cannot be
extended too far in the regular three dimensional space
due to geometrical frustration [4].

5.2 Statistics for each amino-acid

In the spirit of finding ab initio methods to obtain the
protein structure knowing the sequence of its AAs, it is
very useful to perform cell statistics separately for each
amino-acid to try to recognize them from the geometry of
their cells. In Figure 7 one provides the histograms h(e)
and h(f), fraction of faces with e edges and fraction of cells
with f faces, for the twenty amino-acids (here Cyss and

Fig. 7. Histograms h(e), in grey, and h(f), in black (fraction
of faces with e edges and fraction of cells with f faces) for
each amino-acid. The numbers indicated on the right are the
numbers of cells involved in the statistics. The amino-acids
are classified from hydrophilic (top) to hydrophobic (bottom).
The full histograms (regardless the amino-acid) are given at
the bottom of the figure.

Cysh are not distinguished). There are particular faces
which define the surface of the protein, i.e. those at the
interface between an AA and a sphere of the environment.
Figure 8 gives the histograms hS(e) for the number of
edges of surface faces, and hS(f) for the number of surface
faces per surface cells. The full histograms (regardless the
AA) are given at the bottom of the figure.
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Fig. 8. Histograms hS(e) for faces corresponding to the surface
of the protein, in grey, and hS(f), in black, of the number of
surface faces for the cells at the surface of the protein. Same
as in Figure 7 save for the numbers on the right which are now
the numbers of faces involved in the statistics.

In these figures it appears clearly that large AAs have
a larger number of faces than small AAs. Furthermore,
for surface cells, hydrophilic AAs, have a larger number of
surface faces (5.75 for Glu) than hydrophobic AAs (3.13
for Leu).

The surface faces are in contact with the environment.
Their statistics are especially interesting. The mean num-
ber of edges of surface faces is almost exactly 〈es〉 = 5.00.
Any finite cell packing, extracted from a disordered infi-

nite packing should have the same statistic for its internal
faces and for its surface faces, thus 〈es〉 = 〈e〉 � 5.15. This
is not the case here, indicating again some topological or-
der in the AA packing.

There is another point appearing on these histograms
which remains unexplained, but which could be fruitful
in fold prediction, as it seems related to some of the AAs
only. The width of the h(f) distribution is very different
from one AA to another; it is neither correlated to its size,
nor to its hydrophobicity, as can be seen by comparing
Glu and Lys or Arg and His, for instance. This probably
indicates that some AAs have a local neighborhood more
uniform than others.

5.3 Proteins versus random close packed structure

At first sight, if one considers only global statistics for the
number of edges per faces or for the number of faces per
cells, a protein seems very similar to random close packing.
If less constrained than hard sphere packing, it can be
viewed as some kind of froth with cells of different sizes.
Nevertheless there are interesting details which indicate
that a protein has a backbone.

In a previous study [14] analysing Voronoi cells in pro-
teins, two of us have observed that faces shared by two
successive AA along the chain have, on average, a larger
number of edges. Laguerre cells exhibit the same effect,
with a number of edges for these faces 〈echain〉 � 6.5. For
any face, the average number of edges per face is close to
〈e〉 = 5.1 for isotropic cells of equal sizes. This implies that
interfaces other than those separating two successive AA
along the chain, are smaller than average: they have ap-
proximately 5 edges per face. So we can view a protein as
a chain of closely packed cells, slightly compressed along
the chain, thus making a kind of tube tiled by faces with
an average number of edges close to 5. This can be seen
as a justification of the “tube” model mentioned in the
introduction [8].

6 Conclusion

In this paper we have presented a numerical method, the
Laguerre polyhedral decomposition, a very useful tool to
investigate the packing geometry of objects with a wide
size polydispersity, and we have applied it to the study of
the arrangement of amino-acid residues in protein folds.
Not only this method shares with the traditional Voronoi
method the advantage of defining the neighborhood of
amino-acids in absolute way, without introducing any ar-
tificial cut-off, but also, by introducing some weights de-
pending on the volumes of the amino-acids, it permits to
better treat very small and very large amino-acids, espe-
cially when they are in contact.

What is the potential of our method? The ultimate
aim is to obtain a typical cell for each AA. This could be
the case if all AAs of a given type always have cells with
the same number of faces and with faces of the same type.
This is probably too ambitious, but fluctuations in the
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types of cell faces could be limited. According to topo-
logical properties of cell packings, by displacing slightly
their centers one can obtain faces with 4, 5 and 6 edges
for almost all the cells. This being achieved, all AAs of
a given type would have some kind of signature associate
with the number of such faces. So, it would be possible to
construct a contact matrix a priori from the sequence and
obtain the topological folding.

There are other possibilities that appear more acces-
sible with this method. For instance, structures obtained
from X-ray diffraction or NMR analysis could have slight
imperfections. Today, their detection and correction are
time consuming. An algorithm based on Voronoi or La-
guerre decomposition could be very efficient for this pur-
pose.

Very often the biological activity of a protein is as-
sociated with configuration changes. These changes could
affect only a few numbers of cells, even if they correspond
to a noticeable modification of the AA coordinates. The
comparison of the contact matrices obtained by Voronoi
or Laguerre decomposition reveals to be a very sensitive
method to follow such modifications. The Voronoi and La-
guerre decomposition can be used also in secondary struc-
ture attributions [26].
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